If u = 5x and v = log x, then dudv is ______ - Mathematics and Statistics

Advertisements
Advertisements
Fill in the Blanks

If u = 5x and v = log x, then `("du")/("dv")` is ______

Advertisements

Solution

x.5x log 5

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.2

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Choose the correct alternative.

If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if xy = log(xy)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx , if y^x = e^(x+y)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Share
Notifications



      Forgot password?
Use app×