If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Advertisement Remove all ads
Solution
Let PQ and RS are two equal chords of a given circle and they are intersecting each other at point T.
Draw perpendiculars OV and OU on these chords.
In ΔOVT and ΔOUT,
OV = OU (Equal chords of a circle are equidistant from the centre)
∠OVT = ∠OUT (Each 90°)
OT = OT (Common)
∴ ΔOVT ≅ ΔOUT (RHS congruence rule)
∴ ∠OTV = ∠OTU (By CPCT)
Therefore, it is proved that the line joining the point of intersection to the centre makes equal angles with the chords.
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads