Advertisement Remove all ads

If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that y 2 − y 3 x 2 x 3 + y 3 − y 1 x 3 x 1 + y 1 − y 2 x 1 x 2 = 0 - Mathematics

Answer in Brief

If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 

Advertisement Remove all ads

Solution

GIVEN: If three points (x1, y1) (x2, y2) and (x3, y3)  lie on the same line

TO PROVE:  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

PROOF:

We know that three points (x1, y1) (x2, y2) and (x3, y3)   are collinear if

`x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2 ) = 0`

⇒ `x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2 ) = 0`

Dividing by `x_1 x_2 x_3`

⇒   \[\frac{x_1 (y_2 - y_3 ) }{x_1 x_2 x_3} + \frac{x_2 (y_3 - y_1 ) }{x_1x_2 x_3} + \frac{x_3 ( y_1 - y_2 ) }{x_1 x_2 x_3} = 0\]

⇒ \[\frac{(y_2 - y_3)}{x_2 x_3} + \frac{(y_3 - y_1)}{x_3 x_1} + \frac{(y_1 - y_2)}{x_1 x_2} = 0\]

Hence proved.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 6 Co-Ordinate Geometry
Exercise 6.5 | Q 28 | Page 55
Advertisement Remove all ads

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×