If the seventh terms from the beginning and the end in the expansion of (23+133)n are equal, then n equals ______. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Fill in the Blanks

If the seventh terms from the beginning and the end in the expansion of `(root(3)(2) + 1/(root(3)(3)))^n` are equal, then n equals ______.

Advertisement Remove all ads

Solution

If the seventh terms from the beginning and the end in the expansion of `(root(3)(2) + 1/(root(3)(3)))^n` are equal, then n equals 12.

Explanation:

The given expansion is `(root(3)(2) + 1/(root(3)(3)))^n`

∴ T7 = T6+1

= `""^n"C"_6 (2^(1/3))^(n - 6) * 1/((3^(1/3))^6`

= `""^n"C"_6 (2)^((n - 6)/3) * 1/(3)^2`

Now the T7 from the end = T7  from the beginning in `(1/(root(3)(2)) + root(3)(2))^n`.

∴ T7 = T6+1 

= `""^n"C"_6 (1/(3^(1/3)))^(n - 6) * (2^(1/3))^6`

We get `""^n"C"_6 (2)^((n - 6)/3) * (1/3^2) = ""^n"C"_6 1/((n - 6)/3) * (2)^2`

⇒ `(2)^((n - 6)/3) * (3)^-2 = (3)^-((n - 5)/3) * (2)^2`

⇒ `(2)^((n - 6)/3  2)  * (3)^(-2 + (n - 6)/3)` = 1

⇒ `2^((n - 12)/3) * (3)^((n - 12)/3)` = 1

⇒ `(6)^((n - 12)/3) = (6)^0`

⇒ `(n - 12)/3` = 0

⇒ n = 12

Concept: Rth Term from End
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 8 Binomial Theorem
Exercise | Q 28 | Page 145
Share
Notifications

View all notifications


      Forgot password?
View in app×