###### Advertisements

###### Advertisements

If the production function is z = 3x^{2} – 4xy + 3y^{2} where x is the labour and y is the capital, find the marginal productivities of x and y when x = 1, y = 2.

###### Advertisements

#### Solution

Marginal productivity of labour, `(delz)/(delx)` = 6x – 4y

Marginal productivity of labour when x = 1, y = 2 is

`((delz)/(delx))_{(1,2)}` = 6(1) – 4(1)

= 6 – 4

= 2

Marginal productivity of capital, `(delz)/(dely)` = 0 – 4x(1) + 3(2y)

= -4x + 6y

Marginal productivity of qapital when x = 1, y = 2 is

`((delz)/(dely))_{(1,2)}` = -4(1) + 6(2)

= -4 + 12

= 8

#### APPEARS IN

#### RELATED QUESTIONS

Find the marginal productivities of capital (K) and labour (L) if P = 8L – 2K + 3K^{2} – 2L^{2} + 7KL when K = 3 and L = 1.

If the production of a firm is given by P = 4LK – L^{2} + K^{2}, L > 0, K > 0, Prove that L `(del"P")/(del"L") + "K"(del"P")/(del"K")` = 2P.

For the production function P = 3(L)^{0.4} (K)^{0.6}, find the marginal productivities of labour (L) and capital (K) when L = 10 and K = 6. [use: (0.6)^{0.6} = 0.736, (1.67)^{0.4} = 1.2267]

The demand for a quantity A is q = `13 - 2"p"_1 - 3"p"_2^2`. Find the partial elasticities `"E"_"q"/("E"_("p"_1))` and `"E"_"q"/("E"_("p"_2))` when p_{1} = p_{2} = 2.

The demand for a quantity A is q = `80 - "p"_1^2 + 5"p"_2 - "p"_1"p"_2`. Find the partial elasticities `"E"_"q"/("E"_("p"_1))` and `"E"_"q"/("E"_("p"_2))` when p_{1} = 2, p_{2} = 1.

If f(x, y) = 3x^{2} + 4y^{3} + 6xy - x^{2}y^{3} + 7, then show that f_{yy} (1,1) = 18.

Verify `(del^2 "u")/(del x del "y") = (del^2 "u")/(del "y" del x)` for u = x^{3} + 3x^{2} y^{2} + y^{3}.

If R = 5000 units/year, C_{1} = 20 paise, C_{3} = ₹ 20 then EOQ is: