If the points (2, -3), (k, -1), and (0, 4) are collinear, then find the value of 4k. - Mathematics

Advertisements
Advertisements
MCQ

If the points (2, -3), (k, -1), and (0, 4) are collinear, then find the value of 4k.

Options

  • 4

  • 7/140

  • 47

  • 40/7

Advertisements

Solution

40/7

  Is there an error in this question or solution?

RELATED QUESTIONS

In each of the following find the value of 'k', for which the points are collinear.

(8, 1), (k, -4), (2, -5)


Find the area of a triangle with vertices at the point given in the following:

(1, 0), (6, 0), (4, 3)


Find the area of a triangle with vertices at the point given in the following:

(2, 7), (1, 1), (10, 8)


Find the area of a triangle with vertices at the point given in the following:

(−2, −3), (3, 2), (−1, −8)


Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.


Find values of k if area of triangle is 4 square units and vertices are (−2, 0), (0, 4), (0, k)


Find equation of line joining (1, 2) and (3, 6) using the determinant.


Find equation of line joining (3, 1) and (9, 3) using determinant.


Find the area of the following triangle:


Find the missing value:

Base Height Area of triangle
15 cm ______ 87 cm2

ΔABC is right angled at A (see the given figure). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of AD.


Find the area of a triangle whose vertices are

(6,3), (-3,5) and (4,2)


The point A divides the join of P (−5, 1)  and Q(3, 5) in the ratio k:1. Find the two values of k for which the area of ΔABC where B is (1, 5) and C(7, −2) is equal to 2 units.

 

The area of a triangle is 5. Two of its vertices are (2, 1) and (3, −2). The third vertex lies on y = x + 3. Find the third vertex.

 

Find the centroid of the triangle whosw vertices is  (1,4), (-1,1) and (3,2) . 


Find the angle subtended at the origin by the line segment whose end points are (0, 100) and (10, 0).


Prove that the lines joining the middle points of the opposite sides of a quadrilateral and the join of the middle points of its diagonals meet in a point and bisect one another


Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm ?


Find the area of a triangle whose sides are 9 cm, 12 cm and 15 cm ?


Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42cm ?


The perimeter of a triangular field is 540 m and its sides are in the ratio 25 : 17 : 12. Find the area of the triangle ?


Find the area of the blades of thc magnetic compass shown in Fig.. 12.27. (Take √11 = 3.32).


A(6,1) , B(8,2) and C(9,4) are the vertices of a parallelogram ABCD. If E is the midpoint of DC, find the area of ΔADE 


 Using determinants, find the values of k, if the area of triangle with vertices (–2, 0), (0, 4) and (0, k) is 4 square units. 


In ☐ ABCD, l(AB) = 13 cm, l(DC) = 9 cm, l(AD) = 8 cm, find the area of ☐ ABCD.


Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).


Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).


What is the area of a triangle with base 4.8 cm and height 3.6 cm?


Find the area of the following triangle:


If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is 


The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
20 cm 40 cm ?

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
5 feet ? 20 sq.feet

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
? 12 m 24 sq.m

A field is in the shape of a right angled triangle whose base is 25 m and height 20 m. Find the cost of levelling the field at the rate of ₹ 45 per sq.m2


In a triangle ABC, if `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, then prove that ∆ABC is an isoceles triangle.


Let ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`and ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, then ______.


If A, B, C are the angles of a triangle, then ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______.


If the co-ordinates of the vertices of an equilateral triangle with sides of length ‘a’ are (x1, y1), (x2, y2), (x3, y3), then `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`


The value of the determinant `abs((1,"x","x"^3),(1,"y","y"^3),(1,"z","z"^3))` is ____________.


If the points (3, -2), (x, 2), (8, 8) are collinear, then find the value of x.


If the points (a1, b1), (a2, b2) and(a1 + a2, b1 + b2) are collinear, then ____________.


Find the area of the triangle whose vertices are (-2, 6), (3, -6), and (1, 5).


Let `Delta = abs (("x", "y", "z"),("x"^2, "y"^2, "z"^2),("x"^3, "y"^3, "z"^3)),` then the value of `Delta` is ____________.


The area of a triangle with vertices (a, b + c), (b, c + a) and (c, a + b) is ______.


Points A(3, 1), B(12, –2) and C(0, 2) cannot be the vertices of a triangle.


The area of ∆ABC is 8 cm2 in which AB = AC = 4 cm and ∠A = 90º.


Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m2.


Find the area of the trapezium PQRS with height PQ given in figure


A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.


The dimensions of a rectangle ABCD are 51 cm × 25 cm. A trapezium PQCD with its parallel sides QC and PD in the ratio 9:8, is cut off from the rectangle as shown in the figure. If the area of the trapezium PQCD is `5/6` h part of the area of the rectangle, find the lengths QC and PD.


Area of triangle MNO in the figure is ______.


In the given figure, if PR = 12 cm, QR = 6 cm and PL = 8 cm, then QM is ______.


Area of a right-angled triangle is 30 cm2. If its smallest side is 5 cm, then its hypotenuse is ______.


Triangles having the same base have equal area.


Area of a triangle PQR right-angled at Q is 60 cm2 in the figure. If the smallest side is 8 cm long, find the length of the other two sides.


Let a vector `αhati + βhatj` be obtained by rotating the vector `sqrt(3)hati + hatj` by an angle 45° about the origin in counter-clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), (0, β) and (0, 0) is equal to ______.


If (a, b), (c, d) and (e, f) are the vertices of ΔABC and Δ denotes the area of ΔABC, then `|(a, c, e),(b, d, f),(1, 1, 1)|^2` is equal to ______.


Using determinants, find the area of ΔPQR with vertices P(3, 1), Q(9, 3) and R(5, 7). Also, find the equation of line PQ using determinants.


Find the missing value:

Base Height Area of Triangle
22 cm ______ 170.5 cm2

Share
Notifications



      Forgot password?
Use app×