Tamil Nadu Board of Secondary EducationHSC Science Class 12th

If the normal at the point ‘t1‘ on the parabola y2 = 4ax meets the parabola again at the point ‘t2‘, then prove that t2 = tt-(t1+2t1) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If the normal at the point ‘t1‘ on the parabola y2 = 4ax meets the parabola again at the point ‘t2‘, then prove that t2 = `- ("t"_1 + 2/"t"_1)`

Advertisement Remove all ads

Solution

Equation of normal to y2 = 4at’ t’ is y + xt = 2at + at3.

So equation of normal at ‘t1’ is y + xt1 = 2at1 + at13

The normal meets the parabola y2 = 4ax at ‘t2

(ie.,) at (at22, 2at2)

⇒ 2at2 + at1t22 = 2at1 + at13

So 2a(t2 – t1) = at13 – at1t22

⇒ 2a(t2 – t1) = at1(t12 – t22)

⇒ 2(t2 – t1) = t1(t1 + t2)(t1 – t2)

⇒ 2= – t1(t1 + t2)

⇒ t1 + t2 = `(-2)/"t"_1`

⇒ t2 = `- "t"_1 - 2/"t"_1`

= `- ("t"_1 + 2/"t"_1)`

Concept: Tangents and Normals to Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.4 [Page 207]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 12th Mathematics Volume 1 and 2 Answers Guide
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.4 | Q 8 | Page 207
Share
Notifications



      Forgot password?
View in app×