# If the Temperature of a Tungsten Filament is Raised from 2000 K to 2010 K, by What Factor Does the Emission Current Change? Work Function of Tungsten is 4.5 Ev. - Physics

Sum

If the temperature of a tungsten filament is raised from 2000 K to 2010 K, by what factor does the emission current change? Work function of tungsten is 4.5 eV.

#### Solution

Given:-

Work function of tungsten = 4.5 eV

Initial temperature of tungsten filament, T = 2000 K

Final temperature of tungsten filament, T' = 2010 K

Let the emission current at (T = 2000 K) be i.

Let the emission current at (T' = 2010 K) be i'.

The emission currents are given by

$i = AS T^2 e^{- \phi/kT}$

$i' = AST '^2 e^{- e/kT'}$

Dividing i by i', we get:-

$\frac{i}{i'} = \frac{T^2}{T '^2}\frac{e^{- \phi/kT'}}{e^{- \phi/kT'}}$

$\frac{i}{i'} = \left( \frac{T}{T'} \right)^2 e^{- \phi/kT + \phi/kT'}$

$= \left( \frac{T}{T'} \right)^2 e^\frac{\phi}{k}\left( \frac{1}{T'} - \frac{1}{T} \right)$

$\frac{i}{i'} = \left( \frac{2000}{2010} \right)^2 e^\frac{4 . 5 \times 1 . 6 \times {10}^{- 19}}{1 . 38 \times {10}^{- 23}}\left( \frac{1}{2010} - \frac{1}{2000} \right) .$

$= \frac{40000}{(201 )^2} e^\frac{4 . 5 \times 1 . 6}{1 . 38}( - 0 . 0248)$

$= \frac{0 . 8786}{(201 )^2} \times 40000 = 0 . 8699$

$\frac{i}{i'} = \frac{1}{0 . 8699} = 1 . 1495 = 1 . 14$

Concept: Davisson-Germer Experiment
Is there an error in this question or solution?

#### APPEARS IN

HC Verma Class 11, Class 12 Concepts of Physics Vol. 2
Chapter 19 Electric Current through Gases
Q 8 | Page 353