Advertisement Remove all ads

If Tan α = X X + 1 and Tan β = 1 2 X + 1 , Then Tan β = 1 2 X + 1 is Equal to - Mathematics

MCQ
Sum

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 

Options

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

Advertisement Remove all ads

Solution

It is given that \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\beta = \frac{x}{x + 1}\] 

Now,
\[\tan\left( \alpha + \beta \right) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}\]
\[ = \frac{\frac{x}{x + 1} + \frac{1}{2x + 1}}{1 - \frac{x}{x + 1} \times \frac{1}{2x + 1}}\]
\[ = \frac{\frac{x\left( 2x + 1 \right) + x + 1}{\left( x + 1 \right)\left( 2x + 1 \right)}}{\frac{\left( x + 1 \right)\left( 2x + 1 \right) - x}{\left( x + 1 \right)\left( 2x + 1 \right)}}\]
\[ = \frac{2 x^2 + x + x + 1}{2 x^2 + 3x + 1 - x}\]
\[= \frac{2 x^2 + 2x + 1}{2 x^2 + 2x + 1}\]
\[ = 1\]
\[\therefore \tan\left( \alpha + \beta \right) = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow \alpha + \beta = \frac{\pi}{4}\]

Hence, the correct answer is option D.

Concept: Transformation Formulae
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 8 Transformation formulae
Q 14 | Page 22
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×