Advertisement Remove all ads

If Tan Theta = 1/Sqrt2 Find the Value of (Cosec^2 Theta - Sec^2 Theta)/(Cosec^2 Theta + Cot^2 Theta) - Mathematics

if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`

Advertisement Remove all ads

Solution

Given `tan theta = 1/sqrt2`

We have to find the value of the expression `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`

We know that,

`1 +cot^2 theta = cosec^2 theta`

`=> cosec^2 theta - cot^2 theta = 1`

Therefore, the given expression can be written as

`(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta) = (cosec^2 theta - sec^2 theta)/(1 + cot^2 theta + cot^2 theta)`

`tan theta = 1/sqrt2 => cot theta = sqrt2`

`(cosec^2 theta - sec^2 theta)/(1 + 2 cot^2 theta) = (1 + cot^2 theta -  (1 + tan^2 theta))/(1 + 2 cot62 theta)`             (since `sec^2 theta    =1 + tan^2 theta`)

`= (cot^2 theta - tan^2 theta)/(1 + 2 cot^ theta)`

`= ((sqrt2)^2 - (1/sqrt2)^2)/(1 + 2 xx (sqrt2)^2)`

`= 3/10`

Hence, the value of the given expression is 3/10

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.2 | Q 3 | Page 54
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×