If tanθ = 2, find the values of other trigonometric ratios.

Advertisement Remove all ads

#### Solution

tan*θ* = 2 (Given)

We have,

\[\sec^2 \theta = 1 + \tan^2 \theta\]

\[ \Rightarrow \sec\theta = \sqrt{1 + \tan^2 \theta}\]

\[ \Rightarrow \sec\theta = \sqrt{1 + 2^2}\]

\[ \Rightarrow \sec\theta = \sqrt{1 + 4} = \sqrt{5}\]

\[\therefore \cos\theta = \frac{1}{\sec\theta} = \frac{1}{\sqrt{5}}\]

Now,

\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]

\[ \Rightarrow \sin\theta = \tan\theta \times \cos\theta\]

\[ \Rightarrow \sin\theta = 2 \times \frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}\]

\[ \therefore cosec\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{2}{\sqrt{5}}} = \frac{\sqrt{5}}{2}\]

Also,

\[\cot\theta = \frac{1}{\tan\theta} = \frac{1}{2}\]

Is there an error in this question or solution?

Advertisement Remove all ads

#### APPEARS IN

Advertisement Remove all ads

Advertisement Remove all ads