Advertisement Remove all ads

If Tan-1 X - Cot-1 X = Tan-1 ( 1 √ 3 ) , X> 0 Then Find the Value of X and Hence Find the Value of Sec-1 ( 2 X ) - Mathematics

Question

Sum

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.

Solution 1

tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0

⇒ tan-1 x - tan-1 `(1/"x")` = tan-1 `(1/sqrt(3))`   ....[∵ cot-1 "x" = tan-1 `(1/"x"), "x" >0`] 

⇒`tan^-1 (("x"-1/"x")/(1+"x". 1/"x")) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

Solution 2

Given,

tan-1 x - cot-1 x = tan-1 `(1/sqrt3),` x > 0

⇒ `tan^-1 x - tan^-1 (1/x) = tan^-1 (1/sqrt3)   ....[ ∵ cot^-1 x = tan-1 (1/x), x > 0 ] `

⇒`tan^-1 ((x-1/x)/(1+x. 1/x)) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×