If T N = Sin N X + Cos N X , Prove that 6 T 10 − 15 T 8 + 10 T 6 − 1 = 0 - Mathematics

If $T_n = \sin^n x + \cos^n x$, prove that $6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0$

Solution

LHS = $6 T_{10} - 15 T_8 + 10 T_6 - 1$
$=6\left( \sin^{10} x + \cos^{10} x \right) - 15\left( \sin^8 x + \cos^8 x \right) + 10\left( \sin^6 x + \cos^6 x \right) - 1$
=6(sin^2x+cos^2x)(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1
=6(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1
=6sin^8x+6cos^8x-6sin^2xcos^2x-15sin^8x-15cos^8x+10(sin^6x+cos^6x)-1

=-6sin^2xcos^2x-9sin^8x-9cos^8x+10(sin^6x+cos^6x)-1
=-6sin^2xcos^2x-9(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1
=-6sin^2xcos^2x-9(sin^2x+cos^2x)(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1
=-6sin^2xcos^2x-9(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1
=-6sin^2xcos^2x-9sin^6x-9cos^6x+9sin^2xcos^2x+10sin^6x+10cos^6x-1
=3sin^2xcos^2x+sin^6x+cos^6x-1
=3sin^2xcos^2x+(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2xcos^2x)-1
=3sin^2xcos^2x+sin^4x+cos^4x-sin^2xcos^2x-1

=(sin^2x)^2+2sin^2xcos^2x+(cos^2x)^2-1
=(sin^2x+cos^2x)^2-1
=12-1
=0
=RHS

Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 26.3 | Page 19