Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
If sum of the 3rd and the 8th terms of an AP is 7 and the sum of the 7th and the 14th terms is –3, find the 10th term.
Advertisement Remove all ads
Solution
Let the first term and common difference of an AP are a and d, respectively.
a3 + a8 = 7 and a17 + a14 = -3
⇒ a + (3 – 1)d + a + (8 – 1)d = 7 .......[∵ an = a + (n- 1 )d]
and a + (7 – 1 )d + a + (14 – 1 )d = – 3
⇒ a + 2d + a + 7d = 7
And a + 6d + a + 13d = -3
⇒ 2A + 9d = 7 .......(i)
And 2a + 19d = – 3 ......(ii)
On subtracting equation (i) from equation (ii), we get
10d = – 10
⇒ d = – 1
2a + 9(-1) = 7 ......[From equation (i)]
⇒ 2a – 9 = 7
⇒ 2a = 16
⇒ a = 8
∴ a10 = a + (10 – 1)d
= 8 + 9(–1)
= 8 – 9
= –1
Concept: Sum of First n Terms of an A.P.
Is there an error in this question or solution?