Advertisement Remove all ads

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.

Advertisement Remove all ads

Solution

Let ABC be the right angled triangle with
base b and hypotenuse h.

Given that b+h=k

Let A be the area of the right triangle.

`A=1/2 xxbxxsqrt(h^2-b^2)`

`A^2=1/4b^2(h^2-b^2)`

`A^2=b^2/4((k-b)^2-b^2) [because h=k-b]`

`A^2=b^2/4(k^2+b^2-2kb-b^2)`

`A^2=b^2/4(k^2-2kb)`

`A^2=(b^2k^2-2kb^3)/4`

``Differentiating the above function with respect to be, we have

`2A (dA)/(db)=(2bk^2-6kb^2)/4.......(1)`

`=>(dA)/(db)=(bk^2-3kb^2)/(2A)`

For the area to be maximum, we have

`(dA)/(db)=0`

`=>bk^2-3kb^2=0`

`bk=3b^2`

`b=k/3`

Again differentiating the function in equation (1), with respect to b, we have

`2((dA)/(db))2+2A(d^2A)/(db^2)=(2k^2-12kb)/4.....(2)`

Now substituting 0 and b in equation (2), we have

`2A(d^2A)/(db^2)=(2k^2-12k(k/3))/4`

`2A(d^2A)/(db^2)=(6k^2-12k^2)/12`

`2A(d^2A)/(db^2)=-k^2/2`

`2A(d^2A)/(db^2)=-k^2/(4A)<0`

Thus area is maximum at b=k/3.

Now, ` h=k-k/3=(2k)/3`

Let  be he angle between the base of triangle and hypotenuse of the right triangle.

Thus, `costheta=b/h=(k/3)/((2k)/3)=1/2`

`=>theta=cos^(-1)(1/2)=pi/3`

Concept: Simple Problems on Applications of Derivatives
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×