If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
Solution
Let ABC be the right angled triangle with BC = x , AC = y such that x + y = k, where k is any constant. Let θ be the angle between the base and the hypotenuse.
Let A be the area of the triangle.
`A=1/2xxBC×AC=1/2xsqrt(y^2−x^2)`
`⇒A^2=x^2/4(y^2−x^2)`
`⇒A^2=x^2/4[(k−x)^2−x^2]`
`⇒A^2=(k^2x^2−2kx^3)/4 .....(1)`
Differentiating w.r.t. x, we get
`2A(dA)/(dx)=(2k^2x−6kx^2)/4 .....(2)`
`⇒(dA)/(dx)=(k^2x−3kx^2)/(4A)`
For maximum or minimum,
`(dA)/(dx)=0`
`⇒(k^2x−3kx^2)/(4A)=0`
`⇒x=k/3`
Differentiating (2) w.r.t. x, we get
`2((dA)/(dx))^2+2A(d^2A)/(dx^2)=(2k^2−12kx)/4 .....(3)`
Substituting `(dA)/(dx)=0 and x=k/3` in (3), we get
`(d^2A)/(dx^2)=−k^2/(4A)<0`
Thus, A is maximum when x=k/3.
`x=k/3⇒y=k−k/3=(2k)/3 [∵x+y=k]`
`∴ cosθ=x/y`
`⇒cosθ=(k/3)/((2k)/3)=1/2`
`⇒θ=π/3`