Maharashtra State BoardHSC Commerce 11th
Advertisement Remove all ads

If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2. - Mathematics and Statistics

Sum

If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.

Advertisement Remove all ads

Solution

Let a and r be the 1st term and common ratio of the G.P. respectively.

∴ Sn = `"a"(("r"^"n" - 1)/("r" - 1)), "S"_(2"n") = "a"(("r"^(2"n") - 1)/("r" - 1)), "S"_(3"n") = "a"(("r"^(3"n") - 1)/("r" - 1))`

∴ S2n – Sn = `"a"(("r"^(2"n") - 1)/("r" - 1)) - "a"(("r"^"n" - 1)/("r" - 1))`

= `"a"/("r" - 1)("r"^(2"n") - 1 - "r"^"n" + 1)`

= `"a"/("r" - 1)("r"^(2"n") - "r"^"n")`

= `"ar"^"n"/("r" - 1) ("r"^"n" - 1)`

∴ S2n – Sn = `("r"^"n"*"a"("r"^"n" - 1))/("r" - 1)`     ....(i)

S3n – S2n = `"a"(("r"^(3"n") - 1)/("r" - 1)) - "a"(("r"^(2"n") - 1)/("r" - 1))`

= `"a"/("r" - 1)("r"^(3"n") - 1 - "r"^(2"n") + 1)`

= `"a"/("r" - 1)("r"^(3"n") - "r"^(2"n"))`

= `"a"/("r" - 1)*"r"^(2"n")("r"^"n" - 1)`

= `"a"*(("r"^"n" - 1)/("r" - 1))*"r"^(2"n")`

∴ Sn(S3n – S2n) = `["a"*(("r"^"n" - 1)/("r" - 1))]["a"*(("r"^"n" - 1)/("r" - 1))"r"^(2"n")]`

= `["r"^"n"*("a"("r"^"n" - 1))/("r" - 1)]^2`

∴ Sn(S3n – S2n) = (S2n – Sn)2       ....[From (i)]

Concept: Sum of the First n Terms of a G.P.
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) 11th Standard Maharashtra State Board
Chapter 4 Sequences and Series
Exercise 4.2 | Q 10 | Page 55
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×