If Sin a = `9/41` Find All the Values of Cos a and Tan a - Mathematics

Advertisements
Advertisements

If sin A = `9/41` find all the values of cos A and tan A

Advertisements

Solution

We have sin A = `9/41`
As,
`Cos^2 A= 1 − sin^2 A`

=`1-(9/41)^2`

=`1-81/1681`

=`(1681-81)/1681`

`⇒ cos^2 A = 1600/1681`

`⇒ cos A = sqrt(1600/1681)`

`⇒ cos A = 40/41`

Also, 

`Tan A = sin A/cos A`

`= ((9/41))/((40/41))` 

`=9/40`

  Is there an error in this question or solution?
Chapter 5: Trigonometric Ratios - Exercises

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 5 Trigonometric Ratios
Exercises | Q 8

RELATED QUESTIONS

if `sin theta = 3/5  " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`


If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`


If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)


In the adjoining figure, `∠B  = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find  (i)  sin theta and (ii) `costheta`


If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.


If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1


Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`

 


If A = 600 and B = 300, verify that: 

(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`


If sin (A + B) = 1 and cos (A – B) = 1, 0 ≤ (A + B) ≤ 900  and A > B, then find A and B.


In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

sin θ    `11/61`   `1/2`       `3/5`  
cos θ `35/37`       `1/sqrt3`        
tan θ     `1`     `21/20` `8/15`   `1/(2sqrt2)`

`(cos 28°)/(sin 62°)` = ?


sin20°   =  cos ______°


tan 30° × tan ______°  = 1


cos 40° = sin ______°


In the following figure: 

AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.

Find the value of :

(i) cot x

(ii) `1/sin^2 y – 1/tan^2 y`

(iii) `6/cos x – 5/cos y + 8 tan y`.


From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)


In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B 
(ii) tan C
(iii) sin2 B + cos2
(iv) tan C - cot B


If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.


If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.


If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.


If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.


If sinA = 0.8, find the other trigonometric ratios for A.


In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C


In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x


From the given figure, find all the trigonometric ratios of angle B


From the given figure, find the values of sec B


From the given figure, find the values of cos C


If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ


If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`


If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ


If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`


From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅


A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)


Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.


Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.

Statement R (Reason): cosec2 θ – cot2 θ = 1


Share
Notifications



      Forgot password?
Use app×