If Sin θ = `3/4` Show that `Sqrt((Cosec^2theta - Cot^2theta)/(Sec^2theta-1)) =Sqrt(7)/3` - Mathematics

Advertisements
Advertisements

If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3` 

Advertisements

Solution

LHS = `sqrt((cosec^2theta - cot^2theta)/(sec^2 2-1))`

  =` sqrt(1/tan^2theta)`

=`sqrt(cot^2theta)`

= `cottheta`

= `sqrt(cosec^2theta -1)`

= `sqrt(1/(3/4)^2-1)`

=`sqrt((4/3)^2-1)`

=`sqrt(16/9-1)`

=`sqrt((16-9)/9)`

=`sqrt(7/9)`

=`sqrt(7)/3`

= RHS

  Is there an error in this question or solution?
Chapter 5: Trigonometric Ratios - Exercises

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 5 Trigonometric Ratios
Exercises | Q 15

RELATED QUESTIONS

If θ = 30° verify that  `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`


If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B


If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B


If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)


If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1


If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`


In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C


If sin ∝  = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0


Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`. 


In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

sin θ    `11/61`   `1/2`       `3/5`  
cos θ `35/37`       `1/sqrt3`        
tan θ     `1`     `21/20` `8/15`   `1/(2sqrt2)`

`(cos 28°)/(sin 62°)` = ?


sin20°   =  cos ______°


tan 30° × tan ______°  = 1


cos 40° = sin ______°


Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`


If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3


If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.


In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD. 


In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

cotA = `(1)/(11)`


In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

sinB = `sqrt(3)/(2)`


In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB


In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C


In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y


In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of `(1)/("sin"^2 x) - (1)/("tan"^2 x)`


From the given figure, find the values of sin B


From the given figure, find the values of cos C


From the given figure, find the values of tan C


From the given figure, find the values of cosec C


If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ


If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`


If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x


If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`


From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅


Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.


Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.


Share
Notifications



      Forgot password?
Use app×