Advertisement Remove all ads

If the Sides A, B and C of ∆Abc Are in H.P., Prove that Sin 2 a 2 , Sin 2 B 2 and Sin 2 C 2 - Mathematics

If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]

Advertisement Remove all ads

Solution

\[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2} \text{ is a H . P }. \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}} \text{ and } \frac{1}{\sin^2 \frac{C}{2}} \text{ is an A . P } . \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}} = \frac{1}{\sin^2 \frac{C}{2}} - \frac{1}{\sin^2 \frac{B}{2}}\]
\[ \Leftrightarrow \frac{\sin^2 \frac{A}{2} - \sin^2 \frac{B}{2}}{\sin^2 \frac{A}{2} \sin^2 \frac{B}{2}} = \frac{\sin^2 \frac{B}{2} - \sin^2 \frac{C}{2}}{\sin^2 \frac{B}{2} \sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}} \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin^2 \frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin^2 \frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow 2\sin\frac{C}{2}\sin\frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = 2\sin\frac{A}{2}\sin\frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow \sin\frac{C}{2}\sin C \sin\left( \frac{A - B}{2} \right) = \sin\frac{A}{2}\sin A\sin\left( \frac{B - C}{2} \right) \left[ \because \sin2\theta = 2sin\thetacos\theta \right]\]
\[ \Leftrightarrow \sin C \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin A \cos\left( \frac{B + C}{2} \right) \sin\left( \frac{B - C}{2} \right) \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin C\frac{\left( \sin A - \sin B \right)}{2} = \sin A\frac{\left( \sin B - \sin C \right)}{2} \left[ \sin C - \sin D = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ \Leftrightarrow \sin C\left( \sin A - \sin B \right) = \sin A\left( \sin B - \sin C \right)\]
\[ \Leftrightarrow ck\left( ak - bk \right) = ak\left( bk - ck \right) \left( \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \left( say \right) \right)\]
\[ \Leftrightarrow ca - cb = ab - ac\]
\[ \Leftrightarrow 2ac = ab + bc\]
\[ \Leftrightarrow \frac{2}{b} = \frac{1}{c} + \frac{1}{a} \left[ \text{ multiplying both the sides by abc } \right]\]
\[ \Leftrightarrow \text{ a, b, c are in H . P } . \]

Concept: Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 31 | Page 14
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×