Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Advertisement Remove all ads
Solution
Given that α is in quadrant IV, where x is positive and y is negative.
`sec alpha=r/x=2/sqrt3`
`Let r=2k, `
`r^2=x^2+y^2`
`therefore(2k^2)=(sqrt(3k))^2+y^2`
`therefore y^2=4k^2-3k^2=k^2`
`therefore y=+-k`
`cosec alpha =r/y=(2k)/-k=-2`
Substituting the value of cosec ,we get
`(1-cosec alpha)/(1+cosec alpha)=(1-(-2))/(1+(-2))=(1+2)/(1-2)=3/-1 `
`(1-cosec alpha)/(1+cosec alpha)=-3`
Concept: Trigonometric Identities
Is there an error in this question or solution?