Advertisement Remove all ads

If π’š Satisfies the Equation D Y D X = X 2 Y βˆ’ 1 with X 0 = 0 , Y 0 = 1 Using Taylor’S Series Method Find π’š 𝒂𝒕 𝒙= 𝟎.𝟏 (Take H=0.1). - Applied Mathematics 2

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If π’š satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find π’š 𝒂𝒕 𝒙= 𝟎.𝟏 (take h=0.1).

Advertisement Remove all ads

Solution

`(dy)/(dx)=x^2y-1` `x_0=0, y_0=1` 𝒉=𝟎.𝟏
To find : π’š(𝟎.𝟏)

`y'=x^2y-1  ,  y_0'=-1`

`y''=x^2y'+2xy  ,  y_0''=0`

`y'''=x^2y''+2y'x+2y+2xy  ,  y_0'''=0`

Taylor’s series is :

`y=y_0+h.y_0'+h^2/(2!)y_0''+h^3/(3!)y_0'''+...`

∴ π’š(𝟎.𝟏)=𝟏+𝟎.𝟏(−𝟏)+𝟎+`(0.1)^3/(3!)(2)`

∴ π’š(𝟎.𝟏)=𝟎.πŸ—πŸŽπŸŽπŸ‘

Concept: Taylor’S Series Method
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
Course
View in app×