If Q is the foot of the perpendicular from P(2, 4, 3) on the line joining the point A(1, 2, 4) and B(3, 4, 5), find coordinates of Q
Solution
Let PQ be the perpendicular drawn from point P(2, 4, 3) to the line joining the points A(1, 2, 4) and B (3, 4, 5).
Let Q divides AB internally in the ratio λ:1
∴ Q ≡ `((3lambda + 1)/(lambda + 1), (4lambda + 2)/(lambda + 1), (5lambda + 4)/(lambda + 1))` .......(i)
Direction ratios of PQ are
`(3lambda + 1)/(lambda + 1) - 2, (4lambda + 2)/(lambda + 1) - 4, (5lambda + 4)/(lambda + 1) - 3`
i.e., `(lambda - 1)/(lambda + 1), (-2)/(lambda + 1), (2lambda + 1)/(lambda + 1)`
Now, direction ratios of AB are, 3 – 1, 4 – 2, 5 – 4 i.e., 2, 2, 1.
Since PQ is perpendicular to AB,
`2((lambda - 1)/(lambda + 1)) + (2(-2))/(lambda + 1) + 1((2lambda + 1)/(lambda + 1))` = 0
∴ `(2lambda - 2 - 4 + 2lambda + 1)/(lambda + 1)` = 0
∴ 4λ − 5 = 0
∴ 4λ = 5
∴ λ = `5/4`
Putting λ = `5/4` in (i),
Coordinates of Q are,
`(3(5/4) + 1)/((5/4) + 1) = 19/9`
`(4(5/4) + 2)/((5/4) + 1) = 28/9`
`(5(5/4) + 4)/((5/4) + 1) = 41/9`
∴ Q ≡ `(19/9, 28/9, 41/9)`