Advertisement Remove all ads

If the Product of Zeros of the Polynomial F(X) Ax3 − 6x2 + 11x − 6 is 4, Then a = - Mathematics

MCQ

If the product of zeros of the polynomial f(xax3 − 6x2 + 11x − 6 is 4, then a =

Options

  • \[\frac{3}{2}\]

  • \[- \frac{3}{2}\]

  • \[\frac{2}{3}\]

  • \[- \frac{2}{3}\]

  • \[- \frac{2}{3}\]

Advertisement Remove all ads

Solution

Since `alpha` and`beta` are the zeros of quadratic polynomial f(xax3 − 6x2 + 11x − 6

`alpha + ß = - (text{coefficient of x})/(text{coefficient of } x^2)`

So we have 

`4 = ((-6)/a)`

`4 = 6/a`

`4a=6`

`a = 6/4`

`a= (3xxcancel(2))/(2xxcancel(2))`

`a = 3/2`

The value of a is `3/2`

Hence, the correct alternative is (a).

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 2 Polynomials
Q 11 | Page 62
Advertisement Remove all ads

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×