If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.
Solution 1
The given points are P(k-1, 2) , A(3,k) and B(k,5).
∵ AP =BP
∴ AP2 = BP2
`⇒ (k-1-3)^2 +(2-k)^2 = (k-1-k)^2 + (2-5)^2`
`⇒ (k-4)^2 +(2-k)^2 = (-1)^2 +(-3)^2`
`⇒ k^2 -8y +16+4+k^2 -4k =1+9`
`⇒ k^2 -6y +5 =0`
`⇒ (k-1)(k-5)=0`
`⇒ k=1 or k=5`
Hence , k=1 or k=5
Solution 2
It is given that P(k − 1, 2) is equidistant from the points A(3, k) and B(k, 5).
∴ AP = BP
\[\Rightarrow \sqrt{\left[ \left( k - 1 \right) - 3 \right]^2 + \left( 2 - k \right)^2} = \sqrt{\left[ \left( k - 1 \right) - k \right]^2 + \left( 2 - 5 \right)^2} \left( \text{ Distance formula } \right)\]
\[ \Rightarrow \sqrt{\left( k - 4 \right)^2 + \left( 2 - k \right)^2} = \sqrt{\left( - 1 \right)^2 + \left( - 3 \right)^2}\]
Squaring on both sides, we get
\[k^2 - 8k + 16 + 4 - 4k + k^2 = 10\]
\[ \Rightarrow 2 k^2 - 12k + 10 = 0\]
\[ \Rightarrow k^2 - 6k + 5 = 0\]
\[ \Rightarrow \left( k - 1 \right)\left( k - 5 \right) = 0\]
\[\Rightarrow k - 1 = 0 \text{ or k } - 5 = 0\]
\[ \Rightarrow k = 1 or k = 5\]
Thus, the value of k is 1 or 5.