Advertisement Remove all ads

If the Point C ( - 2,3) is Equidistant Form the Points a (3, -1) and Bx (X ,8) , Find the Value of X. Also, Find the Distance Between Bc - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If the point C ( - 2,3)  is equidistant form the points A (3, -1) and Bx (x ,8)  , find the value of x. Also, find the distance between BC

Advertisement Remove all ads

Solution

As per the question, we have

AC=BC

`⇒ sqrt((-2-3)^2 +(3+1)^2) = sqrt ((-2-x)^2 +(3-8)^2)`

`⇒sqrt((5)^2 +(4)^2 ) = sqrt(( x +2)^2 + (-5)^2)`

⇒ 25+16 = (x+2)2 + 25        (Squaring both sides) 

⇒ 25+ 16 = (x +2)2 +25 

⇒(x +2)2 = 16 

`⇒ x +2 = +- 4`

` ⇒ x = -2 +-4=-2-4,-2 +4=-6,2`

Now,

`BC = sqrt((-2 - x)^2 +(3-8)^2`

`= sqrt((-2-2)^2 +(-5)`

`= sqrt((16+25)) = sqrt(41) `    units

Hence, x = 2 or - 6 and BC =` sqrt(41)` units .

 

Concept: Coordinate Geometry
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 16 Coordinate Geomentry
Q 15

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×