If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also find the length of AB. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Answer in Brief

If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.

If a point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), then find the value of p.

Advertisement Remove all ads

Solution 1

The given points are A(0, 2), B(3, p) and C(p, 5).

It is given that A is equidistant from B and C.

∴ AB = AC

⇒ AB2 = AC2

⇒ (3 − 0)2 + (p − 2)2 = (p − 0)2 + (5 − 2)2

⇒ 9 + p2 + 4 − 4p = p2 + 9

⇒ 4 − 4p = 0

⇒ 4p = 4

p = 1

Thus, the value of p is 1.

Length of AB `=sqrt((3-0)^2+(1-2)^2)=sqrt(3^2+(-1)^2)=sqrt(9+1)=sqrt(10) units`

Solution 2

It is given that A(0, 2) is equidistant from the points B(3, p) and C(p, 5).
∴ AB = AC

\[\Rightarrow \sqrt{\left( 3 - 0 \right)^2 + \left( p - 2 \right)^2} = \sqrt{\left( p - 0 \right)^2 + \left( 5 - 2 \right)^2}\]                           (Distance formula)

Squaring on both sides, we get

\[9 + p^2 - 4p + 4 = p^2 + 9\]
\[ \Rightarrow - 4p + 4 = 0\]
\[ \Rightarrow p = 1\]

Thus, the value of p is 1.

 
Concept: Distance Formula
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.2 [Page 17]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 6 Co-Ordinate Geometry
Exercise 6.2 | Q 37 | Page 17
RD Sharma Class 10 Maths
Chapter 6 Co-Ordinate Geometry
Exercise 6.2 | Q 44 | Page 17

Video TutorialsVIEW ALL [1]

Share
Notifications



      Forgot password?
View in app×