# If N +2c8 : N − 2p4 = 57 : 16, Find N. - Mathematics

If n +2C8 : n − 2P4 = 57 : 16, find n.

#### Solution

$\Rightarrow \frac{{}^{n + 2} C_8}{{}^{n - 2} P_4} = \frac{57}{16}$
$\Rightarrow \frac{(n + 2)!}{8! (n - 6)!} \times \frac{(n - 6)!}{(n - 2)!} = \frac{57}{16}$
$\Rightarrow \frac{(n + 2) (n + 1) n (n - 1) (n - 2)!}{8!} \times \frac{1}{(n - 2)!} = \frac{57}{16}$
$\Rightarrow (n + 2) (n + 1) n (n - 1) = \frac{57}{16} \times 8! = \frac{19 \times 3}{16} \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$
$\Rightarrow (n + 2) (n + 1) n (n - 1) = 143640$
$\Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times 3 \times 7 \times 6 \times 5 \times 4 \times 3$
$\Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times (3 \times 7) \times (6 \times 3) \times (4 \times 5)$
$\Rightarrow (n - 1) n (n + 1) (n + 2) = 18 \times 19 \times 20 \times 21$
$\Rightarrow n - 1 = 18$
$\Rightarrow n = 19$

Concept: Combination
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 17 Combinations
Exercise 17.1 | Q 10 | Page 8