If the mth term of an A.P. be `1/n` and nth term be `1/m`, then show that its (mn)th term is 1.
Solution 1
Let a and d be the first term and common difference respectively of the given A.P.
Then,
1/n= mth term ⇒ 1/n = a + (m – 1) d ….(i)
1/m = nth term ⇒ 1/m = a + (n – 1) d ….(ii)
On subtracting equation (ii) from equation (i), we get
`\frac{1}{n}-\frac{1}{m}=( mn)d`
`\Rightarrow \frac{m-n}{mn}=( mn)d\Rightarrow d=\frac{1}{mn}`
`\frac{1}{n}=a+\frac{(m-1)}{mn}\Rightarrow a=\frac{1}{mn}`
∴ (mn)th term = a + (mn – 1) d
`=\frac{1}{mn}+(mn-1)\frac{1}{mn}=1`
Solution 2
Let a and d be the first term and common difference respectively of the AP, respectively.
Then,
mth term =1/n
`=> a + (m - 1)d = 1/n`
`a = 1/n - (m -1)d` .....(1)
`"nth term"= 1/m`
`=> a + (n - 1)d = 1/m`
`=> 1/n -(m - 1)d + (n - 1)d = 1/m` [From 1]
`=> d(n - 1 - m + 1) = 1/m - 1/n`
`=> d(n - m) = (n - m)/mn`
`=> d = 1/"mn"`
Putting d = 1/mn in (1) we have
`a = 1/m - (m - 1) 1/(mn)`
`= 1/n - m/(mn) + 1/(mn)`
`= 1/n - 1/n + 1/(mn) = 1/(mn)`
`:. t_"mn" = a + (mn - 1)d = 1/(mn) + (mn -1) 1/(mn) = 1`