If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers - Mathematics and Statistics

Advertisements
Advertisements
Sum

If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers

Advertisements

Solution

Given, P01(L) = 50, P01(P) = 72

Dorbish-Bowley’s Price Index Number

P01(D-B) = `("P"_01("L") + "P"_01("P"))/2`

= `(50 + 72)/2`

= `122/2`

= 61

Fisher’s Price Index Number

P01(F) = `sqrt("P"_01("L")*"P"_01("P"))`

= `sqrt(50 xx 72)`

= `sqrt(3600)`

= 60

Concept: Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 2.5: Index Numbers - Q.4

RELATED QUESTIONS

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Laspeyre’s Price Index Number is given by ______.


Paasche’s Price Index Number is given by ______


Choose the correct alternative :

Fisher’s Price Number is given by


Fill in the blank :

Paasche’s Price Index Number is given by _______.


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


State whether the following is True or False :

`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Fisher’s Price Index Number is


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications



      Forgot password?
Use app×