# If G Be the Centroid of a Triangle Abc, Prove That: Ab2 + Bc2 + Ca2 = 3 (Ga2 + Gb2 + Gc2) - Mathematics

Sum

If G be the centroid of a triangle ABC, prove that:

AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)

#### Solution

Let A(x1,y1); B(x2,y2); C(x3,y3) be the coordinates of the vertices of ΔABC.Let us assume that centroid of the ΔABC is at the origin G.So, the coordinates of G are G(0,0).

Now,(x_1+x_2+x_3)/3 =0; (y_1+y_2+y_3)/3 =0

So, x_1+x_2+x_3=0 ...........(1)

y_1+y_2+y_3=0     ..........(2)

Squaring (1) and (2), we get

x_1^2+x_2^2+x_3^2+2x_1x_2+2x_2x_3+2x_3x_1=0   ..........(3)

y_1^2+y_2^2+y_3^2+2y_1y_2+2y_2y_3+2y_3y_1=0  ..........(4)

LHS=AB^2+BC^2+CA^2

=[sqrt((x_2-x_1)^2 +(y_2-y_1)^2]]^2 +[sqrt((x_3-x_2)^2+(y_3-y_2)^2)]^2 +[sqrt((x_3-x_1)^2+(y_3-y_1)^2)]^2

=(x_2-x_1)^2 +(y_2-y_1)^2+(x_3-x_2)^2+(y_3-y_2)^2+(x_3-x_1)^2+(y_3-y_1)^2

=x_1^2x_2^2-2x_1^2+y_1^2+y_2^2-2y_1y_2+x_2^2+x_3^2-2x_2x_3+y_2^2+y_2^2+y_3^2-2y_2y_3+x_1^2+x_3^2-2x_1x_3+y_1^2+y_3^2-2y_1v_3

=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)-(2x_1x_2+2x_2x_3+2x_3x_1)-(2y_1y_2+2y_2y_3+2y_3y_1)

=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)+(x_1^2+x_2^2+x_3^2)+(y_1^2+y_2^2+y_3^2)

=3(x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2)

RHS =3(GA^2+GB^2+GC^2)

=[{sqrt((x_1-0)^2+(y_1-0)^2)}^2 +{sqrt((x_2-0)^2+(y_2-0)^2)}^2 +{sqrt((x_3-0)^2+(y_3-0)^2)}^2]

=3[x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2]

Hence, AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

Concept: Coordinate Geometry
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 10 Maths
Chapter 6 Co-Ordinate Geometry
Exercise 6.4 | Q 9 | Page 37