Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

If the function f (x) is continuous in the interval [-2, 2],find the values of a and b where - Mathematics and Statistics

If the function f (x) is continuous in the interval [-2, 2],find the values of a and b where

`f(x)=(sinax)/x-2, for-2<=x<=0`

`=2x+1, for 0<=x<=1`

`=2bsqrt(x^2+3)-1, for 1<x<=2`

Advertisement Remove all ads

Solution

Since the function f (x) is continuous in the interval [-2,2]

 f is continuous at in x = 0 and x = 1
(i) continuity at x = 0

`lim_(x->0)f(x)=lim_(x->0)((sinax)/x-2)`

`=lim_(x->0)((sinax)/(ax)a-2)`

=a(1)-2

=a-2

f (x)= 2x +1, for 0<= x <=1 ...(i)
f(0)=2(0)+1=1

f is continuous at x=0

`lim_(x->0^-)f(x)=f(0)`

a-2=1

a=3

(ii) Continuity at x = 1

From (i), f(1)=3

`lim_(x->1)f(x)=lim_(x->1^+)(2bsqrt(x^2+3)-1)`

`=2blim_(x->1)sqrt(x^2+3)-1`

`=2bsqrt(1+3)-1=4b-1`

f is continuous at x = 1

`lim_(x->1)f(x)=f(1)`

4b-1=3

4b=4

b=1

Concept: Definition of Continuity - Continuity in Interval - Definition
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×