Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
If the function `f(x)=(5^sinx-1)^2/(xlog(1+2x))` for x ≠ 0 is continuous at x = 0, find f (0).
Advertisement Remove all ads
Solution
f is continuous at x = 0.
`f(0)=lim_(x->0)f(x)`
`f(0)=lim_(x->0)(5^sinx-1)^2/(xlog(1+2x))=lim_(x->0)((5^sinx-1)^2/x^2)/((xlog(1+2x))/x^2)`
`=lim_(x->0)(((5^sinx-1)/sinx)^2.sin^2x/x^2)/((2log(1+2x))/(2x))`
`=(lim_(x->0)(5^sinx-1)/sinx xx.lim_(x->0)sinx/x)^2/(2((lim_(x->0)log(1+2x))/(2x)))`
`f(0)=(log5)^2/2`
Concept: Definition of Continuity - Continuity of a Function at a Point
Is there an error in this question or solution?