If the function f(x)=(5^sinx-1)^2/(xlog(1+2x))  for x ≠ 0 is continuous at x = 0, find f (0). - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If the function `f(x)=(5^sinx-1)^2/(xlog(1+2x))`  for x ≠ 0 is continuous at x = 0, find f (0).

Advertisement Remove all ads

Solution

f is continuous at x = 0.

`f(0)=lim_(x->0)f(x)`

`f(0)=lim_(x->0)(5^sinx-1)^2/(xlog(1+2x))=lim_(x->0)((5^sinx-1)^2/x^2)/((xlog(1+2x))/x^2)`

`=lim_(x->0)(((5^sinx-1)/sinx)^2.sin^2x/x^2)/((2log(1+2x))/(2x))`

`=(lim_(x->0)(5^sinx-1)/sinx xx.lim_(x->0)sinx/x)^2/(2((lim_(x->0)log(1+2x))/(2x)))`

`f(0)=(log5)^2/2`

Concept: Definition of Continuity - Continuity of a Function at a Point
  Is there an error in this question or solution?
2016-2017 (July)

APPEARS IN

Share
Notifications



      Forgot password?
View in app×