Tamil Nadu Board of Secondary EducationHSC Arts Class 12

If FF(α)=[cosα0sinα010-sinα0cosα], show that FF[F(α)]-1=F(-α) - Mathematics

Advertisements
Advertisements
Sum

If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`

Advertisements

Solution

Let A = F(α)

So `["F"(alpha)]^-1 = "A"^-1`

Now A = `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`

|A| = `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`

Expanding the determinant - along R2 we get

`- (0) + 1[cos^2alpha + sin^-2alpha] - (0)` = 1 ≠ 0

So `"A"^-1` exists

Now `"A"^-1 = 1/|"A"| ("adj A") = 1/1 ("adj A")`= adj A

To FInd adj A: adj A = (Aij)T

`("A"_"ij")^"T" = [(+|(1, 0),(0, cos alpha)|, -|(0, 0),(-sinalpha, cosalpha)|, +|(0, 1),(-sinalpha, 0)|),(-|(0, sinalpha)|, +|(cosalpha, sinalpha), (- sinalpha, cosalpha)|, -|(cosalpha, 0),(- sinalpha, 0)|),(+|(0, sinalpha),(1, 0)|, -|(cosalpha, sinalpha),(0, 0)|, +|(cosalpha, 0),(0, 1)|)]`

= `[(+(cosalpha), -(0), +(sinalpha)),(-(0), +(1), -(0)),(+(-sinalpha), -(0), +(cosalpha))]`

= `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`

∴ adj A = `("A"^-1)`

= `("A"_"ij")^"T"`

= `[(cosalpha, 0, -sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`

(i.e) `"A"^-1 = ["F"(alpha)]^-1 = [(cosalpha, 0, -sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`

Given `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`

So `"F"(- alpha) = [(cos(- alpha), 0, sin(- alpha)),(0, 1, 0),(-sin(- alpha), 0, cos(- alpha))]`

= `[(cosalpha, 0, sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`

∴  `cos(- theta) = cos theta` and `sin(- theta) = - sin theta)`

Here (1) = (2)

⇒ `["F"(alpha)]^-1 = "F"(- alpha)`

Concept: Inverse of a Non-singular Square Matrix
  Is there an error in this question or solution?
Chapter 1: Applications of Matrices and Determinants - Exercise 1.1 [Page 15]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 12th Mathematics Volume 1 and 2 Answers Guide
Chapter 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 3 | Page 15

RELATED QUESTIONS

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`


Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2 


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications



      Forgot password?
Use app×