Tamil Nadu Board of Secondary EducationHSC Science Class 11

# If f(x) = |x + 100| + x2, test whether f’(-100) exists. - Mathematics

Sum

If f(x) = |x + 100| + x2, test whether f’(–100) exists.

#### Solution

f(x) = |x + 100| + x2

First let us find the left limit of f(x) at x = – 100

When x < – 100 ,

f(x) = – (x + 100) + x2

f(– 100) = – (– 100 + 100) + (– 100)2

f(– 100) = 1002

f"'"(- 100^-) =  lim_(x -> - 100^-) (f(x) - f(- 100))/(x - (- 100)

= lim_(x -> -10^-) (-(x + 100) + x^2 - 100^2)/(x + 100)

= lim_(x -> -100^-) [(-(x + 100))/(x + 100) + (x^2 - 100^2)/(x + 100)]

= lim_(x -> -100^-) [- 1 + ((x + 100)(x - 100))/(x + 100)]

= lim_(x -> -100^-) [- 1 + x - 100]

= – 1 – 100 – 100

f'(– 100) = – 201  ........(1)

Next let us find the right limit of f(x) at x = – 100

when x > – 100

f(x) = x + 100 + x2

f(– 100) = – 100 + 100 + (– 100)2

f(– 100) = 1002

f"'"(- 100^+) =  lim_(x -> - 100^+) (f(x) - f(- 100))/(x - (- 100))

= lim_(x -> - 100^+) (x + 100 + x^2 - 100^2)/(x + 100)

f'(– 100+) = – 199  ........(2)

From equation (1) and (2), we get

f’(– 100) ≠ f'(– 100+)

∴ f’(x) does not exist at x = – 100

Hence, f'(– 100) does not exist

Concept: Differentiability and Continuity
Is there an error in this question or solution?
Chapter 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.1 [Page 147]

#### APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 11th Mathematics Volume 1 and 2 Answers Guide
Chapter 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.1 | Q 6 | Page 147
Share