###### Advertisements

###### Advertisements

If f(x) = k, where k is constant, then `int "k" "d"x` = 0

#### Options

True

False

###### Advertisements

#### Solution

This statement is **False.**

#### APPEARS IN

#### RELATED QUESTIONS

**Choose the correct alternative:**

The value of `int ("d"x)/sqrt(1 - x)` is

**Choose the correct alternative:**

`int(("e"^(2x) + "e"^(-2x))/"e"^x) "d"x` =

`int 5^(6x + 9) "d"x` = ______ + c

**State whether the following statement is True or False:**

If f'(x) = 3x^{2} + 2x, then by definition of integration, we get f(x) = x^{3} + x^{2} + c

Evaluate `int1/(x(x-1)) dx`

Evaluate `int 1/(x(x-1))dx`

Evaluate `int(5x^2 - 6x+3)/(2x- 3 )dx`

If f' (x) = 4x^{3} - 3x^{2 }+ 2x + k, f(O) = 1 and f(1) = finf (x).

If f'(x) - 4x^{3} - 3x^{2} + 2x + k, f(0) = 1 and f(1) = 4, find f(x).

Evaluate the following.

`int x sqrt(1+x^2) dx`

Evaluate `int 1 / (x (x - 1)) dx`

If f'(x) = 4x^{3} - 3x^{2} + 2x + k, f(0) = 1 and f(1) = 4, find f(x).