Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

If F(X) = ("E"^(2"X") - 1)/"Ax" , for X < 0 , a ≠ 0 - Mathematics and Statistics

Sum

If f(x) = `("e"^(2"x") - 1)/"ax"`   , for x < 0 , a ≠ 0

         = 1                                    for x = 0

       = `("log" (1 + 7"x"))/"bx"` , for x > 0 , b ≠ 0

is continuous at x = 0, then find a and b.

Advertisement Remove all ads

Solution

Given function is continuous at x = 0. 

`therefore lim_(x->0^-) "f"("x") = lim_(x->0^+) "f(x)" = "f"(0)`

f(0) = 1

`lim_(x->0^-) "f(x)" = lim_(x->0) ("e"^("2x")-1)/"ax"` 

                   `[because lim_(x->0) ("a"^"x" - 1)/"x" = "log a"]`


`= 1/ "a"  lim_(x->0)  ("e"^"2x" - 1)/"2x" xx 2`


`= 1/"a"  "log e" xx 2`


`= 2/"a"`


`therefore 2/"a" = 1 => a = 2`


`lim_(x->1^+) "f(x)" = lim_(x->0) ("log"(1 + 7"x"))/"bx"`


`= 1/"b" lim_(x->0) "log" (1 + 7"x")^(1/"x")`


`= 1/"b"  "log" [lim_(x->0) (1 + 7"x")^(1/"7x")]^7`


`= 1/"b"  "log"  "e"^7 = 1/"b" . 7  "log e"`


`= 7/"b"`


`therefore 7/"b" = 1 => b = 7`

Concept: Applications of Definite Integrals
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×