If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]
Advertisement Remove all ads
Solution
Given: \[f\left( x \right) = 1 - \frac{1}{x}\]
Now, \[f\left( \frac{1}{x} \right) = 1 - \frac{1}{\frac{1}{x}} = 1 - x\]
\[\Rightarrow f\left( f\left( \frac{1}{x} \right) \right) = f\left( 1 - x \right)\] Again,
If \[f\left( x \right) = 1 - \frac{1}{x}\]
If \[f\left( x \right) = 1 - \frac{1}{x}\]
Thus, \[f\left( 1 - x \right) = 1 - \frac{1}{1 - x}\]
\[= \frac{1 - x - 1}{1 - x}\]
\[ = \frac{- x}{1 - x}\]
\[ = \frac{- x}{- \left( x - 1 \right)}\]
\[ = \frac{x}{x - 1}\]
\[ = \frac{- x}{1 - x}\]
\[ = \frac{- x}{- \left( x - 1 \right)}\]
\[ = \frac{x}{x - 1}\]
Concept: Concept of Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads