Advertisement Remove all ads

If the Eccentricity of the Hyperbola X2 − Y2 Sec2α = 5 is √ 3 Times the Eccentricity of the Ellipse X2 Sec2 α + Y2 = 25, Then α = - Mathematics

MCQ

If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =

Options

  • \[\frac{\pi}{6}\]

  • \[\frac{\pi}{4}\]

  • \[\frac{\pi}{3}\]

  • \[\frac{\pi}{2}\]

Advertisement Remove all ads

Solution

\[\frac{\pi}{4}\]

The hyperbola 

\[x^2 - y^2 se c^2 \alpha = 5\] can be rewritten in the following way:

\[\frac{x^2}{5} - \frac{y^2}{5 \cos^2 \alpha} = 1\]

This is the standard form of a hyperbola, where 

\[a^2 = 5 \text { and } b^2 = 5 \cos^2 \alpha\].

\[\Rightarrow b^2 = a^2 \left( {e_1}^2 - 1 \right)\]

\[ \Rightarrow 5 \cos^2 \alpha = 5\left( {e_1}^2 - 1 \right)\]

\[ \Rightarrow {e_1}^2 = \cos^2 \alpha + 1 . . . . . \left( 1 \right)\]

The ellipse 

\[x^2 se c^2 \alpha + y^2 = 25\] can be rewritten in the following way:

\[\frac{x^2}{25 \cos^2 \alpha} + \frac{y^2}{25} = 1\]

This is the standard form of an ellipse, where 

\[a^2 = 25 \text { and } b^2 = 25 \cos^2 \alpha\].

\[b^2 = a^2 \left( 1 - {e_2}^2 \right)\]

\[ \Rightarrow {e_2}^2 = 1 - \cos^2 \alpha\]

\[ \Rightarrow {e_2}^2 = \sin^2 \alpha . . . . . . (2)\]

According to the question,

\[\cos^2 \alpha + 1 = 3\left( \sin^2 \alpha \right)\]

\[ \Rightarrow 2 = 4 \sin^2 \alpha\]

\[ \Rightarrow \sin\alpha = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \alpha = \frac{\pi}{4}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 27 Hyperbola
Q 13 | Page 19
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×