Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

If E Sin X − E − Sin X − 4 = 0 , Then X = - Mathematics

MCQ
Sum

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =

Options

  • 0

  • \[\sin^{- 1} \left\{ \log_e \left( 2 - \sqrt{5} \right) \right\}\]

     

  • 1

  • none of these

Advertisement Remove all ads

Solution

 none of these
Given equation:
\[e^{\sin x} - e^{- \sin x} - 4 = 0\]
Let :
\[e^{\sin x }= y\]
Now,
\[y - y^{- 1} - 4 = 0\]
\[ \Rightarrow y^2 - 4y - 1 = 0\]

∴ \[y = \frac{4 \pm \sqrt{16 + 4}}{2}\]
\[\Rightarrow y = \frac{4 \pm \sqrt{20}}{2}\]
\[ \Rightarrow y = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}\]
and,
\[y = e^{\sin x} \]
\[ \Rightarrow e^{\sin x} = 2 \pm \sqrt{5}\]
Taking log on both sides, we get:
\[\sin x = \log_e (2 \pm \sqrt{5})\]
\[\Rightarrow \sin x = \log_e ( 2 + \sqrt{5})\text{ or }\sin x = \log_e ( 2 - \sqrt{5})\]
\[ \Rightarrow \sin x = \log_e ( 4 . 24)\text{ or }\sin x = \log_e ( - 0 . 24)\]
\[ \log_e ( 4 . 24) > 1\text{ and }\sin x\text{ cannot be greater than }1 . \]
In the other case, the log of negative term occurs, which is not defined.
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 11 Trigonometric equations
Q 15 | Page 27
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×