Advertisement Remove all ads

If the Difference Between the Roots of the Equation X 2 + a X + 8 = 0 is 2, Write the Values of A. - Mathematics

If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.

Advertisement Remove all ads

Solution

Given: 

\[x^2 + ax + 8 = 0 .\]

Let \[\alpha \text { and } \beta\] are the roots of the equation.
 Sum of the roots = \[\alpha + \beta = \frac{- a}{1} = - a\].

  Product of the roots = \[\alpha\beta = \frac{8}{1} = 8\]

Given:

\[\alpha - \beta = 2\]

\[\text { Then }, \left( \alpha + \beta \right)^2 - \left( \alpha - \beta \right)^2 = 4\alpha\beta\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 - 2^2 = 4 \times 8\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 - 4 = 32\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 = 32 + 4 = 36\]

\[ \Rightarrow \left( \alpha + \beta \right) = \pm 6\]

\[\alpha + \beta = - a = \pm 6\]

\[a = \pm 6\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 14 Quadratic Equations
Q 5 | Page 16
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×