If cot θ = 7/8 evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
Solution 1
Let us consider a right triangle ABC, right-angled at point B.
`cot theta = 7/8`
If BC is 7k, then AB will be 8k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
AC2 = AB2 + BC2
= (8k)2 + (7k)2
= 64k2 + 49k2
= 113k2
`AC = sqrt113k`
`sin theta = (8k)/sqrt(113k) = 8/sqrt(113)`
`cos theta = (7k)/sqrt(113k) = 7/sqrt113`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ)) = (1-sin^2θ)/(1-cos^2θ)`
`= (1-(8/sqrt113)^2)/(1-(7/sqrt(113))^2)= (1-64/113) /(1-49/113)`
`= (49/113)/(64/113) = 49/64`
Solution 2
`cot theta = 7/8`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
`= (1 - sin^2 theta)/(1 - cos^2 theta)` [∵ (a + b) (a – b) = a2 − b2] a = 1, b = sin 𝜃
We know that sin 2𝜃 + cos2 𝜃 = 1
1 − sin2 𝜃 = cos2 𝜃 = cos2 𝜃
1 − cos2 𝜃 = sin2 𝜃
`= (cos^2 theta)/(sin^2 theta)`
`= cot^2 theta`
`= (cot theta)^2 = [7/8]^2`
`= 49/64`