#### Question

If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.

#### Solution

We have,

\[{cosec}^2 \theta = 1 + \cot^2 \theta\]

\[ \Rightarrow {cosec}^2 \theta = 1 + \left( \frac{40}{9} \right)^2 \]

\[ \Rightarrow {cosec}^2 \theta = 1 + \frac{1600}{81} = \frac{1681}{81}\]

\[ \Rightarrow cosec \theta = \sqrt{\frac{1681}{81}} = \frac{41}{9}\]

Now,

\[\sin\theta = \frac{1}{cosec\theta}\]

\[ \Rightarrow \sin\theta = \frac{1}{\frac{41}{9}}\]

\[ \Rightarrow \sin\theta = \frac{9}{41}\]

Thus, the values of cosec*θ* and sin*θ *are \[\frac{41}{9}\] and \[\frac{9}{41}\], respectively.

Is there an error in this question or solution?

Solution If Cot θ = 40 9 , Find the Values of Cosecθ and Sinθ. Concept: Application of Trigonometry.