Numerical
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
Advertisement Remove all ads
Solution
\[\cos x = - \frac{3}{5}\] Using the identity
\[\cos2\theta = \cos^2 \theta - \sin^2 \theta\] , we get
\[cosx = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow 1 - \frac{3}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{2}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{1}{5} = \cos^2 \frac{x}{2}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \sqrt{\frac{1}{5}}\]
\[ \Rightarrow - \frac{3}{5} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow 1 - \frac{3}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{2}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{1}{5} = \cos^2 \frac{x}{2}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \sqrt{\frac{1}{5}}\]
It is given that x lies in the third quadrant. This means that
\[\frac{x}{2}\] lies in the second quadrant.
\[\therefore \cos\frac{x}{2} = - \frac{1}{\sqrt{5}}\]
Again,
\[\text{ cos } x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \left( - \frac{1}{\sqrt{5}} \right)^2 - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \frac{1}{5} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{1}{5} - \frac{3}{5} = - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \frac{4}{5} = \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \frac{2}{\sqrt{5}}\]
\[ \Rightarrow - \frac{3}{5} = \left( - \frac{1}{\sqrt{5}} \right)^2 - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \frac{1}{5} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{1}{5} - \frac{3}{5} = - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \frac{4}{5} = \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \frac{2}{\sqrt{5}}\]
It is given that x lies in the third quadrant. This means that
\[\frac{x}{2}\] lies in the second quadrant.
\[\therefore \sin\frac{x}{2} = \frac{2}{\sqrt{5}}\]
\[Now, \]
\[\text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \text{ sin } x = \sqrt{1 - \left( - \frac{3}{5} \right)}^2 \]
\[\text{ sin } x = \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}\]
\[\text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \text{ sin } x = \sqrt{1 - \left( - \frac{3}{5} \right)}^2 \]
\[\text{ sin } x = \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}\]
Since x lies in the third quadrant, sinx is negative.
\[\therefore \text{ sin } x = - \frac{4}{5}\]
\[ \Rightarrow \sin2x = 2\text{ sin } x\text{ cos } x\]
\[ \Rightarrow \sin2x = 2 \times \left( - \frac{4}{5} \right) \times \left( - \frac{3}{5} \right)\]
\[ \Rightarrow \sin2x = \frac{24}{25}\]
\[ \Rightarrow \sin2x = 2\text{ sin } x\text{ cos } x\]
\[ \Rightarrow \sin2x = 2 \times \left( - \frac{4}{5} \right) \times \left( - \frac{3}{5} \right)\]
\[ \Rightarrow \sin2x = \frac{24}{25}\]
Concept: Values of Trigonometric Functions at Multiples and Submultiples of an Angle
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads