Advertisement Remove all ads

If A =  ([cos alpha, sin alpha],[-sinalpha, cos alpha]) , find α satisfying 0 < α < π/r when A+A^T=√2I_2 where AT is transpose of A. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.

Advertisement Remove all ads

Solution

Consider the given matrix

A = `[(cosalpha, sin alpha),(-sinalpha,cos alpha)]0<alpha<pi/2`

`A+A^T=sqrt2I_2`

`[(cosalpha, sin alpha),(-sinalpha, cos alpha)]+[(cosalpha,-sinalpha),(sinalpha,cos alpha)]=sqrt2[(1,0),(0,1)]`

`[(2cosalpha, 0),(0,2cosalpha)]=[(sqrt2,0),(0, sqrt2)]`

`2cosalpha=sqrt2`

`cosalpha=sqrt2/2=1/sqrt2`

`alpha=pi/4`

Concept: Operations on Matrices - Addition of Matrices
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×