Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

If the Coefficients of Three Consecutive Terms in the Expansion of (1 + X)N Be 76, 95 and 76, Find N. - Mathematics

If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.

Advertisement Remove all ads

Solution

\[\text{ Suppose r, }  \left( r + 1 \right) \text{ and }  \left( r + 2 \right) \text{ are three consecutive terms in the given expansion }  . \]

\[\text { The coefficients of these terms are } ^{n}{}{C}_{r - 1} , ^{n}{}{C}_r \text{ and } ^ {n}{}{C}_{r + 1} . \]

\[\text{ According to the question, } \]

\[ ^{n}{}{C}_{r - 1} = 76\]

\[^{n}{}{C}_r = 95\]

\[ ^{n}{}{C}_{r + 1} = 76\]

\[ \Rightarrow ^{n}{}{C}_{r - 1} = ^{n}{}{C}_{r + 1} \]

\[ \Rightarrow r - 1 + r + 1 = n [\text{ If }  ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]

\[ \Rightarrow r = \frac{n}{2}\]

\[ \therefore \frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{95}{76}\]

\[ \Rightarrow \frac{n - r + 1}{r} = \frac{95}{76}\]

\[ \Rightarrow \frac{\frac{n}{2} + 1}{\frac{n}{2}} = \frac{95}{76}\]

\[ \Rightarrow 38n + 76 = \frac{95n}{2} \]

\[ \Rightarrow \frac{19n}{2} = 76\]

\[ \Rightarrow n = 8\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 31 | Page 40
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×