Advertisement Remove all ads

If cabc¯=3a¯-2b¯, then prove that abc[a¯b¯c¯]=0 - Mathematics and Statistics

Sum

If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a" bar"b" bar"c"] = 0`

Advertisement Remove all ads

Solution

We use the results: `bar"b" xx bar"b" = bar"0"` and if in a scalar triple product, two vectors are equal, then the scalar triple product is zero.

`[bar"a" bar"b" bar"c"] = bar"a".(bar"b" xx bar"c")`

`= bar"a".[bar"b" xx (3bar"a" - 2bar"b")]`

`= bar"a".(3bar"b" xx bar"a" - 2bar"b" xx bar"b")`

`= bar"a". (3bar"b" xx bar"a" - bar"0")`

`= 3bar"a".(bar"b" xx bar"a") = 3 xx 0 = 0`

Alternative Method:

`bar"c" = 3bar"a" - 2bar"b"`

∴ `bar"c"` is a linear combination of `bar"a"  "and"  bar"b"`

∴ `bar"a" , bar"b" , bar"c"` are coplanar

∴ `[bar"a" , bar"b" , bar"c"] = 0.`

Concept: Vector Triple Product
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×