Advertisement Remove all ads

If a + B + C = 9 and Ab + Bc + Ca =23, Then A3 + B3 + C3 − 3abc = - Mathematics

MCQ

If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =

Options

  • 108

  • 207

  • 669

  • 729

Advertisement Remove all ads

Solution

We have to find the value of   `a^3 +b^3 +c^3 - 3abc`

Given  `a+b+c = 9,ab +bc +ca = 23`

Using identity   `(a+b+c)^2 = a^2 +b^2 +c^2 +2ab +2bc + 2ca` we get,

`(9)^2 = a^2 +b^2 +c^2 +2 (ab+bc +ca)`

` 9 xx 9 = a^2 +b^2 +c^2 +2 xx 23`

`81 = a^2 +b^2 +c^2 +46`

By transposing +46 to left hand side we get,

`81-46 = a^2 +b^2 +c^2`

          `35 = a^2 +b^2 +c^2`

Using identity  `a^3 +b^3 +c^3 -3abc = (a+b+c)[a^2 + b^2 +c^2 - (ab+bc+ca)]`

 `9 xx [35 -23]`

` = 9 xx 12`

` = 108`

The value of  `a^3 +b^3 +c^3 -3abc` is 108.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Mathematics for Class 9
Chapter 4 Algebraic Identities
Q 22 | Page 31
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×