Advertisement Remove all ads

If a and B Are Sets, Then Prove that a − B , a ∩ B and B − a Are Pair Wise Disjoint. - Mathematics

If A and B are sets, then prove that  \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint. 

Advertisement Remove all ads

Solution

\[\left( i \right) \left( A - B \right) \text{ 0and } \left( A \cap B \right)\]
\[\text{ Let } a \in A - B\]
\[ \Rightarrow a \in A \text{ and } a \not\in B\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( A - B \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( ii \right) \left( B - A \right) and \left( A \cap B \right)\]
\[\text{ Let } a \in B - A\]
\[ \Rightarrow a \in B \text{ and } a \not\in A\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( B - A \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( iii \right) \left( A - B \right) \text{ and } \left( B - A \right)\]
\[\left( A - B \right) = \left\{ x: x \in A \text{ and }x \not\in B \right\}\]
\[\left( B - A \right) = \left\{ x: x \in B \text{ and } x \not\in A \right\}\]
\[Hence, \left( A - B \right) \text{ and } \left( B - A \right) \text{ are disjoint sets } . \]

Concept: Universal Set
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 1 Sets
Exercise 1.6 | Q 10 | Page 27
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×