Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
Advertisement Remove all ads
Solution
Given:
tan A = `1/3 and tan B = 1/2`
tan (A+B) = `(tan A + tan B)/(1- tan A tan B)`
On substituting these values in RHS of the expression, we get:
`(tan A + tan B )/(1- tan A tan B) = ((1/3 +1/2))/((1-1/3xx1/3)` =`((5/6))/(1-1/6) = ((5/6))/((5/6))=1`
⇒ tan (A + B) = 1= tan `45^0` [ ∵ tan 450 =1]
∴ A+B = 450
Concept: Trigonometric Ratios and Its Reciprocal
Is there an error in this question or solution?